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Model Requirements and Notations

• MBD system : generalized positions q and velocities v. Dynamic

parameters: mass M(q) (positive definite), external force k(t, q, v).

• Non interpenetration constraints: Φ(j)(q) ≥ 0, 1 ≤ j ≤ ntotal and

compressive contact forces at a contact.

• Joint (bilateral) constraints: Θ(i)(q) = 0, 1 ≤ i ≤ m.

• Frictional Constraints: Coulomb friction, for friction coefficients

µ(j).

• Dynamical Constraints: Newton laws, conservation of impulse at

collision.
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�Contact Model

• Contact configuration described by the (generalized) distance
function d = Φ(q), which is defined for some values of the
interpenetration. Feasible set: Φ(q) ≥ 0.

• Contact forces are compressive, cn ≥ 0.

• Contact forces act only when the contact constraint is exactly
satisfied, or

Φ(q) is complementary to cn or Φ(q)cn = 0, or Φ(q) ⊥ cn.
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�Coulomb Friction Model

• Tangent space generators: D̂(q) =
[
d̂1(q), d̂2(q)

]
, tangent force

multipliers: β ∈ R2, tangent force D(q)β.

• Conic constraints: ||β|| ≤ µcn, where µ is the friction coefficient.

• Max Dissipation Constraints: β = argmin||bβ||≤µcn
vT D̂(q)β̂.

• vT , the tangential velocity, satisfies |vT | = λ = −vT D̂(q) β
||β|| . λ is

the Lagrange multiplier of the conic constraint.

• Discretized Constraints: The set D̂(q)β where ||β|| ≤ µcn is

approximated by a polygonal convex subset: D(q)β̃, β̃ ≥ 0,∣∣∣
∣∣∣β̃

∣∣∣
∣∣∣
1
≤ µcn. Here D(q) = [d1(q), d2(q), . . . , dm(q)].

For simplicity, we denote β̃ the vector of force multipliers by β.
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�Acceleration Formulation

M(q)
d2q

dt2
−

mX

i=1

ν
(i)

c
(i)
ν −

pX

j=1

“
n(j)(q)c

(j)
n +D

(j)(q)β(j)
”

= k(t, q,
dq

dt
)

Θ(i)(q) = 0, i = 1 . . . m

Φ(j)(q) ≥ 0, compl. to c
(j)
n ≥ 0, j = 1 . . . p

β = argmin bβ(j)v
T
D(q)(j) bβ(j) subject to

˛̨
˛
˛̨
˛bβ(j)

˛̨
˛
˛̨
˛ ≤ µ

(j)
c
(j)
n , j = 1 . . . p

Here ν(i) = ∇Θ
(i), n(j) = ∇Φ(j).

It is known that these problems do not have a classical solution even in 2

dimensions, where the discretized cone coincides with the total cone.
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Time-stepping scheme

Use Euler method, half-explicit in velocities, linearizing the geometrical
constraints. Fundamental variables: velocities and impulses (h × force).

M(vl+1 − v(l)) −
m∑

i=1

ν(i)c(i)
ν −

∑

j∈A

(n(j)c
(j)
n + D(j)β(j)) = hk

ν(i)T

vl+1 = 0, i = 1..m

ρ(j) = n(j)T

vl+1 ≥ 0, compl. to c(j)
n ≥ 0, j ∈ A

σ(j) = λ(j)e(j) + D(j)T vl+1 ≥ 0, compl. to β(j) ≥ 0, j ∈ A

ζ(j) = µ(j)c(j)
n − e(j)T

β(j) ≥ 0, compl. to λ(j) ≥ 0, j ∈ A.

Here ν(i) = ∇Θ(i), n(j) = ∇Φ(j). h is the time step. The set A consists
of the active constraints. (Anitescu and Potra,1997) based on (Stewart
and Trinkle, 1996),
The time-stepping scheme has a solution although the
classical formulation doesn’t!
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Matrix Form of the Integration Step

2
666666664

M −ν̃ −ñ −D̃ 0

ν̃T 0 0 0 0

ñT 0 0 0 0

D̃T 0 0 0 Ẽ

0 0 µ̃ −ẼT 0

3
777777775

2
666666664

v(l+1)

c̃ν

c̃n

β̃

λ̃

3
777777775

+

2
666666664

−Mv(l)
− hk

0

0

0

0

3
777777775

=

2
666666664

0

0

ρ̃

σ̃

ζ̃

3
777777775

2
664

c̃n

β̃

λ̃

3
775

T 2
664

ρ̃

σ̃

ζ̃

3
775 = 0,

2
664

c̃n

β̃

λ̃

3
775 ≥ 0,

2
664

ρ̃

σ̃

ζ̃

3
775 ≥ 0.
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�The need for constraint stabilization

The positions are updated by q(l+1) = q(l) + hlv
(l+1).

Due to the index reduction , the (geometrical) joint and non

interpenetration constraints, which define the feasible set

F =
{

q
∣∣∣Θ(i)(q) = 0, 1 ≤ i ≤ m, Φ(j)(q) ≥ 0, 1 ≤ j ≤ ntotal

}

are replaced by constraints at the velocity level.

This may create constraint drift, in which the constraint infeasibility

keeps growing. In interactive simulation this is particulatly annoying,

since geometrical inconsistency is easy to notice.
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Example of constraint drift
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Comparison of constraint error the original method and modified method

(to be presented later) for a pendulum example. Ratio of infeasibilities

gets to about 103!
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Preventing constraint drift

• Change the approach to a nonlinear and potentially nonconvex

optimization problem.

• Perform a nonlinear projection after each LCP (and eventually

preserving the good energy properties (Anitescu and Potra 2002)). If

there is no friction the projection may be more costly than the LCP.

• Perform one step of an SQP applied to the nonlinear projection

problem (Cline and Pai, 2003). Extension of (Ascher, Chin, Reich

1994) from DAE. No analysis provided.

• Modify the right hand side of the LCP with an appropriate function

of the infeasibility (parameter-free, (Jean, 1999,w/o analysis) and this

work, (Anitescu and Hart 02)) and (Miller and Christiansen 02) and

(Anitescu, Miller and Hart 03). This approach uses no additional

subproblems or projections.
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Stabilized time-stepping scheme

M(vl+1 − v(l)) −
m∑

i=1

ν(i)c(i)
ν −

∑

j∈A

(n(j)c
(j)
n + D(j)β(j)) = hk

ν(i)T

vl+1 +
Θ(i)(q(l))

hl

= 0, i = 1, . . . , m

n(j)T

vl+1 +
Φ(j)(q(l))

hl

−
(
µ(j)λ(j)

)
≥ 0, compl. to c(j)

n ≥ 0, j ∈ A

λ(j)e(j) + D(j)T vl+1 ≥ 0, compl. to β(j) ≥ 0, j ∈ A

µ(j)c(j)
n − e(j)T

β(j) ≥ 0, compl. to λ(j) ≥ 0, j ∈ A.

Recall, ν(i) = ∇Θ(i), n(j) = ∇Φ(j), q(l+1) = q(l) + hv(l+1).

The term
(
−µ(j)λ(j)

)
coresponds to the convex relaxation algorithm pro-

posed by (Anitescu and Hart, 2002). Stabilization works w or w/o it.
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Assumption: pointed friction cone assumption

Friction cone: set of all possible constraint reaction impulses:

FC(q) =
{

t = ν̃cν + ñcn + D̃β̃
∣∣∣cn ≥ 0, β̃ ≥ 0,

∣∣∣
∣∣∣β(j)

∣∣∣
∣∣∣
1
≤ µ(j)c(j)

n , ∀j ∈ A
}

• Definition (Pang and Stewart 1999) FC(q) is pointed if

0 = ν̃cν+ñcn+D̃β̃ ∈ FC(q), cn ≥ 0, β̃ ≥ 0 ⇒
(
cν , cn, β̃

)
= 0

• This assumption is essential in ensuring convergence to a differential

inclusions as hl → 0 (Stewart 2000) and solvability of time-stepping

scheme under more general conditions (Pang and Stewart 1999).

• This assumption implies that the configuration is disassemblable at q

(Anitescu, Cremer and Potra 1995).
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Main Result: assumptions

• Over the course of the simulation the friction cone is uniformly
pointed.

• The geometrical data of the problem, Φ(j)(q) 1 ≤ j ≤ ntotal, the
signed distance functions and Θ(i)(q), i = 1, 2, . . . , m are twice
continously differentiable in a neighborhood of the feasible set F.
This holds if all bodies are smooth-shaped convex except bodies
which are infinite and flat (walls) (M,96)

• The ratio between succesive time steps is uniformly lower bounded
hl

hl−1
≥ 1

ch

• The mass matrix is constant (Newton-Euler formulation in body
coordinates). This can be relaxed.

• There is no initial infeasibility and the coefficient of restitution is 0.

• Definition: The active set A =
{
j|1 ≤ j ≤ n, Φ(j)(q(l)) ≤ ε̂

}
.
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Main result, continued

Then for any fixed time interval T , there exists an H > 0, and a V > 0

and C > 0 such that if hl < H , ∀l, we have that

1. v(l) ≤ V , ∀l.

2. If j /∈ A then Φ(j)(q(l+1)) ≥ 0.

3. The infeasibility, defined as

I(q) = max
1≤i≤m, 1≤j≤ntotal

{
0,

∣∣∣Θ(i)(q)
∣∣∣ , Φ(j)(q)

}

satisfies I(q(l+1)) ≤ C
∣∣∣∣hlv

(l+1)
∣∣∣∣2, ∀l.

The last conclusion demonstrates constraint stabilization. The main tool

in the proof is the stability of the solution of a strictly convex quadratic

program with respect to its right hand side.
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�Main technical tool

minv
1
2vT M (l)v + k̂(l)T

v

subject to n(j)T

v + µ(j)d
(j)T

i v ≥ −Γ(j) − Φ(j)(q(l))
hl

i = 1, 2, . . . , m
(j)
C , j ∈ A

ν(i)T

v = −Θ(i)(q(l))
hl

, i = 1, 2, . . . , m.

• The solution of the LCP for both the original and convex relaxation
scheme is a solution of this QP for some Γ(j) ≥ 0, j ∈ A and k̂(l).

• The QP satisfies MFCQ if and only if the friction cone is pointed.

• There exists a c > 0, such that, for all l,

v(l+1)T

M (l)v(l+1) ≤ v(l)M (l)v(l) + h2
l k

(l)M (l)−1k(l)

+ 2hlv
(l)T

k(l) + c
I(q(l))2

h2
l−1

I(q(l+1)) ≤ ch2
l v

2
l+1, if [q(l), q(l+1)] ∈ N (F )
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Example of non differentiability of the signed distance

(x,y)

H
x

y

R

• Signed distance: d12(q) = |y| − R − H
2 is not differentiable

everywhere!.

• It is, however, differentiable over the set d12(q) ≥ −ε for any

ε < R + H
2 . . We are OK if the infeasibility is not too large.
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Elliptic body simulation
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Ellipse Simulation

We present ten frames of the simulation of an elliptic body that is dropped

on the table. There is an initial angular velocity of 3, the body has axes 4

and 8 and is dropped from a height of 8.
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Infeasibility behavior unstabilized versus stabilized metod
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We see that drift becomes catastrophic for the unstabilized method,

whereas remains in a narrow range for the stabilized method.

Constraint stabilization is accomplished!
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Infeasibility comparison for 21 body simulation
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21 disks of radius 3 on a plank starting from the cannoball arrangement at

rest. Stabilized method still has a much lower infeasibility. The time-step

is 50ms, and the LCP is solved in at most 30 ms at every step.
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�Brazil nut effect simulation

• Time step of 100ms, for 50s. 270 bodies.

• Convex Relaxation Method. One QP/step. No collision backtrack.

• Friction is 0.5, restitution coefficient is 0.5.

• Large ball emerges after about 40 shakes. Results in the same order

of magnitude as MD simulations (but with 4 orders of magnitude

larger time step).
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Brazil nut effect simulations performance
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�Conclusions and future work

• We define a method that achieves constraint stabilization while

solving only linear complementarity problem per step.

• Our method does not need to stop and detect collisions explicitly and

can advance with a constant time step and predictable amount of

effort per step.

• The method has been extended to a parametric version that is used in

a robotic grasp simulator (Miller and Christiansen, 2002) and

(Anitescu, Miller and Hart, 2003).

• Future work: Nonsmooth particles and stabilization proof for

nonzero coefficient of restitution. Convergence for relaxation

scheme as h → 0?
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